
1

Network based distribution of the Abitti
Platform
Jari-Matti Mäkelä

Department of Information Technology
University of Turku

Abstract—The Abitti platform offers a
controlled environment for arranging exams,
ranging from small exams local to a school
to the annual nation-wide matriculation ex-
amination. The current version of the Abitti
platform relies on local booting of the oper-
ating system image from bootable media. We
suggest an alternative, complementary boot
process based on network booting, which has
the major advantage of a relatively quick and
simple setup on supported hardware, with
decent performance and usability and with-
out the need to transition to a completely
new platform.

I. Introduction
The Abitti platform[1] offers an interesting

controlled environment for arranging exams,
ranging from small exams local to a school
to the annual nation-wide matriculation ex-
amination. There has been debate about the
decision of picking a system based on a custom
operating system image for the task, instead
of a solution run on top of a commonly used
commercial operating system, usually provided
by the computer vendors. Along with locally
run applications, solution based on cloud/web
computing and network services have been sug-
gested.

While a custom platform introduces costs
and risks related to the maintenance, security,
reliability and robustness of a system, we argue
that the current solution provides at least two
significant advantages. First, the platform is
based on a single, centrally maintained version
of open source software. With vendor provided
and retail software, the market is fragmented
with multiple versions of operating systems[6]
(and browsers in the case a the suggested

cloud/web based platform), which complicates
testability. Moreover, enforcing a certain policy
with compatible operating systems might re-
sult in extra costs as commercial operating sys-
tem or even hardware updates might be needed
to meet the minimum requirements. Recom-
mending certain certified commercial products
for a nation wide exam may also be subject to
legal challenges such as the antitrust laws[7],
but it is also ethically problematic for a govern-
ment agency to advocate commercial products
especially when free alternatives are not only
available, but already being used for the task.

The second problem comes from the secu-
rity concerns. Abitti offers a controlled client-
side environment and approaching the same
level of control may require multiple monitor-
ing solutions such as rootkits or special mon-
itoring processes with elevated access rights
to personal data, which raises a multitude of
new technical, but also ethical questions. A
cloud/web based solution is also a possible
alternative and comes with its own pros and
cons, but we argue that transition to such a
new approach is a long process and requires
a significant amount of software development
effort beyond a single Hackabi event. However,
even with a cloud/web based solution, a cus-
tom Abitti distribution could be beneficial as
a client-side solution for offering a controlled
web interface to the system. In such a scenario,
one of the selling points of Abitti is to be
able to shut down and hide existing content
stored in the device, in external storage or
in nearby networks without actually damaging
any personal data.

We make the claim that the current operat-

ing model of the Abitti platform still has use in
the coming future revisions of the system, and
this paper focuses on incrementally improving
the current system from a practical point of
view. The main goal of this work is to describe
a working exam environment that supports the
widely known network booting mode. In the
next section, we start with a short introduction
to the concepts of network booting, followed by
a section describing the configuration required
both on the client and server side. Section IV
describes our new contributions related to the
booting and image handling process and finally
in Section VI we draw conclusions.

II. Network booting

The current version of the Abitti platform
relies on local booting of the operating sys-
tem image from bootable media such as USB
mass storage[2] (multiple options, USB sticks
being one of the most common media) or an
optical disc (not officially advertised, but the
same boot system applies to optical storage).
In theory, the image could also be installed
on the hard drive, but this option requires an
extra pre-installation phase which may further
complicate the process of setting up the system
during the examination. The main advantages
of pre-installation are anyway moot as each
exam instance comes with its own distribution
image. At first, the current platform appears
as a straightforward and simple idea for im-
plementing the system. However, the current
solution with removable boot media faces sev-
eral issues that complicate each instance of the
exam process:

1) Expenses (direct, indirect): hardware,
training of personnel, time and other re-
sources for preparing, verifying, and se-
curing the boot media.

2) Technical expertise required: administra-
tors, exam supervisors, preparation of the
USB media.

3) Technical limitations: slow USB host/-
media (especially cheap USB 2.0 sticks,
random access for optical discs), no room
on the media for multiple versions of
the Abitti system for different hardware,

media cannot be removed if the image
does not fit in RAM.

4) Technical faults: broken media
(connectors, scratches, bad blocks,
...), cloned/missing media (can also pose
a security risk).

5) Incompatible hardware: USB type C, no
USB ports, no optical drive, not enough
ports for both charger and USB media
and/or ethernet.

6) Software issues: BIOS (can’t access boot
menu, don’t know how to use, passwords,
secure boot, legacy/UEFI boot, no boot
option for USB), OS (broken ACPI, in-
compatible kernel / drivers, incorrect
driver configuration), etc.

We suggest an alternative, complementary
boot process based on network booting[11]
(netboot). The netboot system is a traditional
client-server approach to computing in a local
area network, but it supports distribution of
services to some extent. In this context, we
define the workstation executing the Abitti
system as client side and the servers associated
with the system as server side. The main idea
of netboot is to be able to start the operating
system on diskless clients without any need for
local installation media. This greatly simplifies
the burden of maintenance on the client side
and naturally affects the expenses as physical
media is not needed nor needs to be prepared
for the exam. While by default the netboot
will not support WiFi directly, preconfigured
WiFi bridges can relay ethernet netboot traffic
between wireless links, if needed. We only note
that while such systems are possible, WiFi may
only offer a limited bandwidth, relatively high
latency, high packet loss and such might still
be impractical for netbooting clients.

Netboot is often fully supported by the
workstation’s ethernet hardware without any
modification, some hardware require an exter-
nal ethernet device, and some hardware also
require a special removable boot media for
activating the netboot. As a final fallback, the
current approach with local USB media (or
optical media) can be used or if even that fails,
the machine is unsupported by the system.
On the server side, netboot does not have

2

any special hardware requirements and only
requires setting up a small number of services.

The major advantage of netboot is a rel-
atively quick and simple setup on supported
hardware - the system BIOS (basic input/out-
put system) can be set up for automatic net-
work booting or as a one time boot option
when connected to networks that offer netboot.
When used on ”normal” networks with no
netbooting set up, the machine starts up the
local operating system instead. This eliminates
the whole class of issues related to pluggable
external media.

III. Configuration

A. Client side configuration

Network booting has been commonly sup-
ported in many enterprise and consumer com-
puters for a long while due to the minimal
cost of including a network boot ROM on the
network chip. The biggest threat to a wide
scale support is the disappearance of ethernet
ports from modern mobile devices as mobile
devices rely more on wireless networks and
become too thin to house such large legacy
connectors.

In the ideal case, the client computer sup-
ports network boot and enabling it only re-
quires a tiny amount of configuration (one
time boot option at boot time or boot order
configuration from the BIOS). Do note that
setting network boot as the default boot option
may slow down the normal boot time by a few
seconds, even when the machine is booted from
a local disk since every boot attempt waits
for a reply from the network. This slowdown
does not affect the energy saving mode known
as ’suspend’ or ’suspend to RAM’, e.g. when
closing the laptop lid. The settings also has
obvious security implications as we do not
want to network boot from every network. We
continue with the discussion of the security
of network boot options on the client side in
Section V.

In the next best case, the machine’s BIOS
supports netboot with a supported (PCMCI-

A/USB) ethernet adapter1 – this could be
a common situation with modern notebooks
with USB 2/3 but without ethernet ports.
The third option is to use the built-in non-
netbootable ethernet or external USB ethernet
with a gPXE[9] bootloader provided from an
USB media. gPXE is an open source (GPL)
network bootloader. It provides a direct re-
placement for proprietary PXE ROMs, with
many extra features.

In the worst case, none of the options work
and a bootable local USB media needs to be
used instead.

If the netboot is supported, the machine will
automatically boot via network and present the
user with a bootloader prompt, which allows
choosing the best operating system configura-
tion. This process is further discussed at the
end of the next section. Once the operating sys-
tem boots, the Abitti platform should launch
without further issues.

B. Server configuration
Here we describe a minimal configuration

for the server side environment, which is re-
sponsible for a) isolating and protecting the
temporary network used for the exam process,
b) relaying traffic, c) providing address and
name services d) monitoring the workstations,
e) offering material to the students, and e)
providing a netboot environment for the f)
student workstations. A full treatment of the
network environment is out of the scope of this
paper, instead we focus on the required changes
for the netboot environment.

DHCP: The netboot process begins with
a special DHCP query[8] from the netboot
enabled clients (role f) to the DHCP server
(role c). This is a standardized process, but
involves special conditionals for choosing the
right pre-execution environment (PXE) image
based on the extracted info (from the query)

1According to several network discussion forums[4],
[5], [3], USB ethernet does not use a class based driver,
thus each driver needs to be separately supported by
the BIOS. Suggestions for better supported chipsets
include: SMSC7500, LAN9500, LAN7500, AX88772,
88178. The ubiquitous and cheap RTL8153 based NICs
from Ebay may not be supported by older BIOS ver-
sions.

3

about the client architecture, e.g. for 32-bit or
64-bit UEFI[15], or for a legacy BIOS client.
An example code for choosing the correct im-
ages, respectively, with Syslinux2 as a PXE
environment is shown in Algorithm 1. Similar
setup is needed for new clients using low-power
mobile devices equipped with the ARM pro-
cessor architecture. Downloading of the image
files is delegated to a TFTP[14] server, which
can be a separate server. Assuming the naming
conventions do not change, the same DHCP
server configuration can be used between ex-
ams without any need to change it.

TFTP: The next step in kernel configuration
is a TFTP server (role e). TFTP is a simple
protocol for downloading files in a local area
network. TFTP does not support encryption
or authentication, which may have security
implications. We discuss possible remedies for
the TFTP’s security limitations in the Section
V. Setting up TFTP is a documented standard
process and we skip it here. Configuring the
Syslinux and an assortment of operating sys-
tem images is also a documented standard pro-
cess. An straightforward example configuration
for Syslinux is shown in Algorithm 2.

The idea of a boot menu is to provide al-
ternative operating system configurations (e.g.
kernel command line parameters) or versions
for systems which have issues with the stan-
dard distribution. The alternative versions may
only use a different kernel & initramfs com-
bination for sidestepping hardware issues, but
more customizations can be provided by cus-
tomizing the full distribution image. We dis-
cuss the process of customizing the distribution
images in Section IV.

Rest of the boot process: Once an operat-
ing system version is chosen for booting, the
boot process continues with normal kernel &
initramfs stages on the client side. A typical
netboot environment does basic initialization
and proceeds with a NFS (Network File Sys-
tem) mounted root filesystem. However, we do
not make that assumption and do not rely
on NFS. The kernel configuration still requires
means for distributing the distribution im-

2http://www.syslinux.org/

ages (the userspace part), which we implement
using a custom solution due to an inherent
scalability problem with the other approaches
in a large scale booting environment such as
the exam process. We discuss the further boot
process in Section IV.

IV. Optimizing the image distribution
A large problem in a environment with pos-

sibly dozens or even hundreds of concurrently
booting machines is the network scalability.
Schools may rely on legacy hardware, for in-
stance switches designed for 100BASE-T net-
works. Assume that an Abitti operating system
image has the size of 1000 MB. The exam starts
with 100 notebooks prepared for netboot. In
this example, the systems must transfer 20%
of the image to fully start up the desktop envi-
ronment (the image can be made malleable in
such a way by providing it at file level or block
level granularity via NFS or NBD[13] (network
block device), respectively). With each client
downloading a separate image of the system, 20
GB of data needs to be transferred. In an ideal
100BASE-T network with a single server side
interface serving the requests, this may take
over 30 minutes. However, in practice network
protocol overhead and connection issues can
double this time. Modern 1000BASE-T net-
works are approximately 10 times faster, yet
still become quite congested with the data.
In practice, not all workstations can store the
whole image in RAM, which leads to repeated
traffic and also more traffic is needed for each
application used in the exam.

A. UDPcast
Our solution is to netboot the kernels and

initramfs separately for each client, but for the
root filesystem image, we use local area net-
work broadcasting. Broadcasting can reduce
the O(n) amount of traffic required for n clients
into O(1). This task relies on an existing tool
called Udp-sender from the UDPcast3 package.
UDPcast is a open source file transfer tool that
can send data simultaneously to many destina-
tions on a local area network. We embed the

3https://www.udpcast.linux.lu/index.html

4

http://www.syslinux.org/
https://www.udpcast.linux.lu/index.html

Algorithm 1 Choosing the correct bootloader image type (dhcpd).

subnet 1 0 . 0 . 0 . 0 netmask 2 55 . 2 55 . 25 5 . 0 {
opt ion r o u t e r s 1 0 . 0 . 0 . 2 5 4 ;
range 1 0 . 0 . 0 . 2 1 0 . 0 . 0 . 2 5 3 ;

c l a s s ” p x e c l i e n t s ” {
match i f sub s t r i ng (opt ion vendor−c l a s s− i d e n t i f i e r ,

0 , 9) = ”PXEClient ” ;
next−s e r v e r 1 0 . 0 . 0 . 1 ;

i f opt ion arch = 00:06 {
f i l ename ” pxe l inux / boot ia32 . e f i ” ;

} e l s e i f opt ion arch = 00:07 {
f i l ename ” pxe l inux / bootx64 . e f i ” ;

} e l s e {
f i l ename ” pxe l inux / pxe l inux . 0 ” ;

}
}

}

Algorithm 2 PXE menu for choosing operating systems (Syslinux).

l a b e l os1
menu l a b e l Ab i t t i o l e t u s v e r s i o
ke rne l k e r n e l s /bzImage−a b i t t i
append i n i t r d=k e r n e l s / in i t r amf s−a b i t t i ip=dhcp . . .

l a b e l os2
menu l a b e l Ab i t t i uus immil la s tag ing−a j u r e i l l a u u s i l l e l a i t t e i l l e
k e rne l k e r n e l s /bzImage−exper imenta l
append i n i t r d=k e r n e l s / in i t r amf s−a b i t t i ip=dhcp . . .

recipient part of this tool to a custom initramfs
image that is responsible for mounting the
root filesystem and the sender part to the
server that manages the distribution images.
In practice, the tool is used to distribute the
largest parts of the boot process, the distribu-
tion images, using the UDP protocol. Since the
protocol does not do as much error checking
as TCP, we double check the result with a
checksum tool at the client end and repeat
the process in case of errors. A more detailed
description of the use of the UDPcast tool on
the client side continues in the next subsection.

As to why are the kernel and initramfs

not broadcasted, modifying the bootloader to
do this requires special code and moreover
not all of the clients may pick the same ker-
nel+initramfs combination. It is also more
likely that the kernel loading would be in-
terleaved with other tasks (people setting up
workstations, BIOS boot routine, boot menu)
which makes optimizing this stage less useful.
Moreover, we can optimize the initramfs and
kernel in various ways.

B. Custom initramfs
The initramfs starts with its own init script

that contains heuristics for deciding how much

5

of the distribution can be downloaded to RAM.
Downloading parts of the distribution to RAM
means that a tmpfs storage is used to per-
manently store parts of the compressed (read-
only) root filesystem until the machine is shut
down. Ideally the whole distribution is down-
loaded (and even uncompressed), which is the
case with most recent hardware, but for some
machines, only a part or none of the distri-
bution can be stored in RAM. As a fallback,
the server must provide the distribution images
via NBD shares so that low memory clients
can access them on a block by block basis and
cache using the general Linux filesystem cache
manager. The process is described in a pseudo
code form in Algorithm 3.

The exact minimum memory requirements
and size of Abitti change between releases so
we do not offer the values here. The distri-
bution is split into parts responsible for the
basic startup process, exam applications and
so forth. Our suggestion is to use squashfs
compressed images which are combined on the
client side using the mainlined overlayfs virtual
filesystem meta-layer. The last layer has to be
a tmpfs in order to guarantee that nothing
will be written to the local machine or to any
network location. Backing up local filesystem
state is also possible, but we do not consider
it here – we assume that all important state
is typed or uploaded to a central remote web
service that manages the exam status.

Once the heuristics finish with the calcu-
lations, the clients use messaging (e.g. secure
MQTT included in the initramfs image) with
the server to signal the need for images, their
negotiated link capacity and start waiting for
UDPcast broadcasts. The server forms groups
from the clients once enough clients join a
group or enough time has passed since last
group formation. These two threshold values
require tuning in practice so it is too early to
specify them yet. The server can also use the
link capacity data for group formation. With
the grouping, the server can adjust the traffic
appropriately, decreasing the network band-
width requirements significantly for networks
with a large number of clients. For example in
the 100BASE-T network with three groups for

100 clients, the boot time requirements for the
first 20% of the 1000 MB image might decrease
to around one minute, a 97% improvement.

C. Size optimization
First, a few words about the initramfs struc-

ture of the suggested netbooting Abitti. We
suggest a totally custom initramfs that is based
on the musl libc4 and custom boot scripts.
Musl is a very lightweight C library used in
embedded distributions such as OpenWRT.
It can be used for building statically linked
busybox5 based initramfs images. For instance,
all the functionality we describe in this paper
(except for the encryption part, which requires
cryptsetup tools and more libraries) can be
fit in < 260 kB. By comparison, a typical
distribution initramfs is several orders of mag-
nitude larger. For instance, a desktop Arch
Linux initramfs for kernel 4.8.13-1-ARCH is
around 21 MB (or larger with more embed-
ded drivers). Note though, although busybox
provides a NBD client, it is not useful for new
NBD servers with multiple shares.

We can also delay the loading of many kernel
drivers to a later stage and only require a com-
prehensive list of (ethernet) network drivers
and the full network stack for mounting and
downloading the distribution images. Since we
already do automatic ip configuration in the
kernel in the code examples, we might compile
all the network drivers in the kernel. While
this could have been problematic due to hard-
ware resource conflicts when legacy non-PnP
ISA hardware was in use, nowadays it should
not lock the boot process. We can embed
the initramfs into the Linux bzImage to in-
crease boot speed by decreasing the number
of required server requests. Since we want to
provide multiple versions of the Linux kernels
for different types of clients with problematic
hardware, we also need to build custom kernels,
but the suggested kernel configurations are
dependent on the kernel versions and require
extensive knowledge. Although kernel config-
uration is very exciting and educational, we
decided to leave it out from this paper.

4https://www.musl-libc.org/
5https://www.busybox.net/

6

https://www.musl-libc.org/
https://www.busybox.net/

Algorithm 3 Decision algorithm for obtaining the distribution images.

const distro_memory_req
const [] d i s t ro_squash f s_part_s i ze s

memory = c a l c u l a t e _ f r e e ()

mqtt_send s igna l_parameters

i f (memory < distro_memory_req)
fa i l_cond Koneessa e i o l e t a r p e e k s i muist ia , y r i t e täänkö s i l t i ?

memory = memory − distro_memory_req

f o r part in squashfs_parts {
i f part . s i z e < memory {

mqtt_send ” reques t ” part
dloaded_part = async_rece ive part −−> mount_local dloaded_part
memory = memory − part . s i z e

} e l s e {
mount_via_nbd part

}
}
over lay_const ruct squashf s_parts
switch_root

The use of ZRAM[10] has become a common
practice on the Android platform and low-
memory devices and it is relatively fast with
the LZ4 compression. We could enable it in the
kernel in low-memory clients to free up more
memory for applications.

The overlayfs approach of the distribution
images also makes it possible to combine parts
of the environment with different desktop sys-
tems (e.g. separate desktops for low-memory
and high-end machines or power users) at boot
time which could make the whole Abitti distri-
bution quite lightweight. One possible scenario
is to offer the non-graphical base system as one
squashfs image, the desktop as another, and
finally the graphical end user applications as
possibly as a third layer. We can also use dif-
ferent compression modes for different parts of
the distribution. For example, LZ4 is relatively
fast, but wastes space, XZ is efficient, but slow

even on fast hardware6.

V. Security
Since the network booting arrangement in-

volves opening new services and distributing
network traffic in a shared local area network,
there are multiple threat scenarios involved.
First, the DHCP protocol is vulnerable to hi-
jacking with rogue servers. We argue that such
a threat possibility already exists in the Abitti
system if the current platform is deployed in a
network with a DHCP service so the netboot
does not actually decrease the security in such
case.

The TFTP protocol is unencrypted and
unauthenticated, but we only use it for reading
read-only operating system kernels and boot-
loaders. It could possibly be hijacked, but we
rely on logic on the higher level in the distri-
bution for securing against such attacks.

6http://facebook.github.io/zstd/

7

http://facebook.github.io/zstd/

For the UDPcast part, all traffic is also
broadcast to all devices in the network. Due
to the open nature of each of the used protocol
mentioned so far, intrusion detection systems
can easily detect the source of bad traffic and
inform the administrators. For the messaging
protocol, encryption is used and the keys can
be provided within the initramfs. Since these
protocols are only used between the server and
a client and not between the clients, if the other
clients are connected to correctly configured
switches, the network will not even route the
traffic for possible adversaries unless the switch
backbone is hijacked. The same can be said
about the NBD traffic provided as a fallback
option for low memory workstations.

Assume a rogue DHCP/TFTP server man-
ages to hijack the servers and redirect / offer
their own Abitti platform images. We could
rely on cryptographic authentication or pro-
vide an obfuscated secret within the correct
distribution images. The distribution images
can further be encrypted with a key obfus-
cated in the initramfs. We could also make use
of secure/trusted booting or TPM[12] hard-
ware, which is further discussed in another
Abitti proposal. Overall, figuring out the secret
during the exam time frame would require
multiple steps, manual work and can turn
out impractical even for skilled professionals
in ICT security. Especially automated attacks
can mitigated with variability provided within
the operating system images.

For securing the servers against attacks, the
suggested protocols do not support remote pro-
cedure calls or provide any way to log in or
to modify any files (if configured correctly). Of
course, a DoS attack is also easily detectable
in a local area network.

Setting the netboot as a default may have
security implications if the machine is booted
while connected to an insecure, possible rogue
network. A simple workaround is to boot the
machine pass the netboot prompt before con-
necting to a network or to revert back to
boot from local disk when not participating in
exams.

VI. Conclusions

So called “diskless” booting from a network
has its up- and downsides. In this paper we
have discussed some central issues related to
the implementation of a network booting envi-
ronment with Abitti, both on the client and
server side. On the client side only minimal
configuration or small modifications are re-
quired to make many workstations network
bootable. In this case the option can eliminate
many of the problems with USB media. In the
worst case, the workstation may not support
network booting, in which case a local USB
mass storage media can be used instead. The
network booting can be seen as a supplemen-
tary way of distributing the platform, but it
cannot replace the old way.

On the server side, the network booting does
not necessarily require any hardware changes,
but new network services must be configured
and distributed to schools that plan to pilot the
system. The system requires additional config-
uration for each exam, but the configuration is
centralized unlike with portable USB media.

A broadcast protocol for efficiently distribut-
ing the operating system image for groups
of clients is proposed. The required services
also have some security implications which are
discussed. Overall, assuming a significant part
of the workstations support network booting,
it offers an interesting option for simplifying
and improving the setup process required for an
exam and can also reduce the expenses inherent
to working with physical media such as USB
sticks.

References

[1] Abitti - Kohti sähköistä ylioppilaskoetta. http://
www.abitti.fi/, 2017.

[2] Abitti - Yleiset ohjeet tietokoneen
käynnistämiseksi USB-muistilta.
http://www.abitti.fi/fi/ohjeet/
tietokoneen-kaynnistaminen-usb-muistilta/
usb-yleiset-ohjeet/, 2017.

[3] Microsoft system center - unable to pxe
boot from a usb ethernet dongle on
a dell xps 13. https://social.technet.
microsoft.com/Forums/systemcenter/en-US/
8d84b766-34be-4be9-b858-a2f811b184ea/
unable-to-pxe-boot-from-a-usb-ethernet-dongle-on-a-dell-xps-13,
2017.

8

http://www.abitti.fi/
http://www.abitti.fi/
http://www.abitti.fi/fi/ohjeet/tietokoneen-kaynnistaminen-usb-muistilta/usb-yleiset-ohjeet/
http://www.abitti.fi/fi/ohjeet/tietokoneen-kaynnistaminen-usb-muistilta/usb-yleiset-ohjeet/
http://www.abitti.fi/fi/ohjeet/tietokoneen-kaynnistaminen-usb-muistilta/usb-yleiset-ohjeet/
https://social.technet.microsoft.com/Forums/systemcenter/en-US/8d84b766-34be-4be9-b858-a2f811b184ea/unable-to-pxe-boot-from-a-usb-ethernet-dongle-on-a-dell-xps-13
https://social.technet.microsoft.com/Forums/systemcenter/en-US/8d84b766-34be-4be9-b858-a2f811b184ea/unable-to-pxe-boot-from-a-usb-ethernet-dongle-on-a-dell-xps-13
https://social.technet.microsoft.com/Forums/systemcenter/en-US/8d84b766-34be-4be9-b858-a2f811b184ea/unable-to-pxe-boot-from-a-usb-ethernet-dongle-on-a-dell-xps-13
https://social.technet.microsoft.com/Forums/systemcenter/en-US/8d84b766-34be-4be9-b858-a2f811b184ea/unable-to-pxe-boot-from-a-usb-ethernet-dongle-on-a-dell-xps-13

[4] Msfn - usb to ethernet adapters and
pxe. http://www.msfn.org/board/topic/
162015-usb-to-ethernet-adapters-and-pxe/, 2017.

[5] Plugable - supporting pxe over usb
deployment scenarios for tablets and
ultrabooks. http://plugable.com/2013/10/27/
supporting-pxe-over-usb-deployment-scenarios-for-tablets-and-ultrabooks/,
2017.

[6] Top 7 Desktop OSs from Dec 2015 to
Dec 2016 . http://gs.statcounter.com/
#desktop-os-ww-monthly-201512-201612, 2017.

[7] Wikipedia: Microsoft litigation - Antitrust
. https://en.wikipedia.org/wiki/Microsoft_
litigation#Anti-trust, 2017.

[8] Steve Alexander and Ralph Droms. Dhcp options
and bootp vendor extensions. 1997.

[9] H Peter Anvin and Marty Connor. x86 network
booting: Integrating gpxe and pxelinux. In Linux
Symposium, page 9. Citeseer, 2008.

[10] Seth Jennings. Transparent memory compression
in linux, 2013.

[11] M Johnston. Preboot execution environment (pxe)
specification, 1999.

[12] TPM Main Specification Level. Version 1.2, revi-
sion 116, 2012.

[13] Marin Lopez and PTA Arturo Garcia Ares.
The network block device. Linux Journal,
2000(73es):40, 2000.

[14] K Sollins. The tftp protocol (revision 2). 1992.
[15] EFI Unified. Unified extensible firmware interface

specification, 2012.

9

http://www.msfn.org/board/topic/162015-usb-to-ethernet-adapters-and-pxe/
http://www.msfn.org/board/topic/162015-usb-to-ethernet-adapters-and-pxe/
http://plugable.com/2013/10/27/supporting-pxe-over-usb-deployment-scenarios-for-tablets-and-ultrabooks/
http://plugable.com/2013/10/27/supporting-pxe-over-usb-deployment-scenarios-for-tablets-and-ultrabooks/
http://gs.statcounter.com/#desktop-os-ww-monthly-201512-201612
http://gs.statcounter.com/#desktop-os-ww-monthly-201512-201612
https://en.wikipedia.org/wiki/Microsoft_litigation#Anti-trust
https://en.wikipedia.org/wiki/Microsoft_litigation#Anti-trust

	Introduction
	Network booting
	Configuration
	Client side configuration
	Server configuration

	Optimizing the image distribution
	UDPcast
	Custom initramfs
	Size optimization

	Security
	Conclusions
	References

